SCCI Digital Library

Differential Equations (Spring 2010) (M-I-T)

S# Lecture Course Institute Instructor Discipline
1
Lecture 10: Continuation: Complex Characteristic Roots (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
2
Lecture 11: Theory of General Second-order Linear Homogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
3
Lecture 12: Continuation: General Theory for Inhomogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
4
Lecture 13: Finding Particular Solutions to Inhomogeneous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
5
Lecture 14: Interpretation of the Exceptional Case: Resonance (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
6
Lecture 15: Introduction to Fourier Series (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
7
Lecture 16: Continuation: More General Periods (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
8
Lecture 17: Finding Particular Solutions via Fourier Series (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
9
Lecture 19: Introduction to the Laplace Transform (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
10
Lecture 1: The Geometrical View of y'= f(x,y) (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
11
Lecture 3: Solving First-order Linear ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
12
Lecture 20: Derivative Formulas (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
13
Lecture 4: First-order Substitution Methods (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
14
Lecture 21: Convolution Formula (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
15
Lecture 5: First-order Autonomous ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
16
Lecture 6: Complex Numbers and Complex Exponentials (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
17
Lecture 22: Using Laplace Transform to Solve ODEs with Discontinuous Inputs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
18
Lecture 23: Use with Impulse Inputs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
19
Lecture 7: First-order Linear with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
20
Lecture 24: Introduction to First-order Systems of ODEs (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
21
Lecture 8: Continuation (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
22
Lecture 25: Homogeneous Linear Systems with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
23
Lecture 9: Solving Second-order Linear ODE's with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
24
Lecture 26: Continuation: Repeated Real Eigenvalues (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences
25
Lecture 27: Sketching Solutions of 2×2 Homogeneous Linear System with Constant Coefficients (M-I-T)
Differential Equations (Spring 2010) (M-I-T) MIT Prof. Haynes Miller, and Prof. Arthur Mattuck Basic and Health Sciences